Symmetric inclusion process with slow boundary: Hydrodynamics and hydrostatics

نویسندگان

چکیده

We study the hydrodynamic and hydrostatic limits of one-dimensional open symmetric inclusion process with slow boundary. Depending on value parameter tuning interaction rate bulk system boundary, we obtain a linear heat equation either Dirichlet, Robin or Neumann boundary conditions as equation. In our approach, combine duality first-second class particle techniques to reduce scaling limit limiting behavior single, non-interacting, particle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrostatics and Dynamical Large Deviations of Boundary Driven Gradient Symmetric Exclusion Processes

We prove hydrostatics of boundary driven gradient exclusion processes, Fick’s law and we present a simple proof of the dynamical large deviations principle which holds in any dimension.

متن کامل

Dynamics of condensation in the symmetric inclusion process

The inclusion process is a stochastic lattice gas, which is a natural bosonic counterpart of the well-studied exclusion process and has strong connections to models of heat conduction and applications in population genetics. Like the zero-range process, due to attractive interaction between the particles, the inclusion process can exhibit a condensation transition. In this paper we present firs...

متن کامل

Symmetric Inclusion-Exclusion

One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas A(S) = ∑ T⊆S B(T ) and B(S) = ∑ T⊆S(−1) |S|−|T A(T ) are equivalent. If we replace B(S) by (−1)B(S) then these formulas take on the symmetric form A(S) = ∑ T⊆S (−1) B(T ) B(S) = ∑ T⊆S (−1) A(T ). which we call symmetric inclusion-exclusion. We study instances of symmetric inclusi...

متن کامل

SYMMETRIC INCLUSION - EXCLUSION Ira

One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas A(S) = ∑ T⊆S B(T ) and B(S) = ∑ T⊆S(−1) |A(T ) are equivalent. If we replace B(S) by (−1)|S|B(S) then these formulas take on the symmetric form A(S) = ∑

متن کامل

Weakly non-equilibrium properties of symmetric inclusion process with open boundaries

We study close to equilibrium properties of the one-dimensional Symmetric Inclusion Process (SIP) by coupling it to two particle-reservoirs at the two boundaries with slightly different chemical potentials. The boundaries introduce irreversibility and induce a weak particle current in the system. We calculate the McLennan ensemble for SIP, which corresponds to the entropy production and the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2022

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/21-bej1390